README.md 767 B

AI Session

The objective is to give a very brief introduction to DQN training using games (just to talk about theory), present OpenSource Web interfaces and create LLM Embeddings to ask questions about given documents.

Things to cover:

  • Simple theory of Q-learning, with a practical example using the a Taxi game.
  • Simple theory of Proximal Policy Optimization, with a practical example using a Pong game.
  • OpenSource Web interfaces available for Stable Diffusion, Inference and Embeddings.
  • A practical example on how to create and use LLMs and Embeddings using a Python script.

In no way should any of this be considered as a complete solution, the goal is just to provide enough elements for a start so all participants can grow from there.